ISCR 2021 Webinar Series: Roeland NOLTE

Encoding information into polymers: A supramolecular approach
ISCR 2021 Webinar Series: Roeland NOLTE

For non-ISCR members: register at animation-iscratuniv-rennes1 [dot] fr

Roeland Nolte is Emeritus Professor at Radboud University, The Netherlands.

His conference will be preceded by a short communication from an ISCR PhD student.

The amount of information trafficking internet nowadays is enormous and we can foresee that in the next decennia the current technologies to process data will no longer suffice. Hence, we have to consider other strategies of handling information. One approach is to explore chemical routes, which nature has also followed during evolution: our brain can store and handle very large amounts of data and process them in a way silicon-based computers cannot do. Although brain-like chemical computers are still far beyond reach, it is of interest to explore how we can design and construct atom- and molecule-based systems for processing information.

In this lecture, he will discuss our efforts to develop technologies to write and store information into single polymer chains with the help of “molecular machines” that are inspired by the hypothetical device (Turing machine) proposed by the mathematician Alan Turing in 1936 as the general basis for the operation of a computer. They use synthetic machines that are derived from chiral porphyrin cages, which thread onto synthetic polymers (e.g. polybutadiene) and glide along it while encoding it with chiral epoxide functions, i.e. (R,R)-epoxide = digit 0 and (S,S)-epoxide = digit 1. The realization of this encoding process, which we control by light, is in progress.1"

Reference

1P. J. Gilissen et al., Molecular motor-functionalized porphyrin macrocycles, Nature Commun. 2020, 11 , 5291.

Keywords

supramolecular chemistry, catalysis, porphyrins, polymers, encoding, turing machine

Contact

Jeanne Crassous, Univ Rennes, CNRS, ISCR-CNRS UMR 6226, F-35000 Rennes, France
jeanne [dot] crassousatuniv-rennes1 [dot] fr

 

Published July 13, 2021